Successional dynamics in the seasonally forced diamond food web.
نویسندگان
چکیده
Plankton seasonal succession is a classic example of nonequilibrium community dynamics. Despite the fact that it has been well studied empirically, it lacks a general quantitative theory. Here we investigate a food web model that includes a resource, two phytoplankton, and a shared grazer-the diamond food web-in a seasonal environment. The model produces a number of successional trajectories that have been widely discussed in the context of the verbal Plankton Ecology Group model of succession, such as a spring bloom of a good competitor followed by a grazer-induced clear-water phase, setting the stage for the late-season dominance of a grazer-resistant species. It also predicts a novel, counterintuitive trajectory where the grazer-resistant species has both early- and late-season blooms. The model often generates regular annual cycles but sometimes produces multiyear cycles or chaos, even with identical forcing each year. Parameterizing the model, we show how the successional trajectory depends on nutrient supply and the length of the growing season, two key parameters that vary among water bodies. This model extends nonequilibrium theory to food webs and is a first step toward a quantitative theory of plankton seasonal succession.
منابع مشابه
Successional state dynamics: a novel approach to modeling nonequilibrium foodweb dynamics.
Communities and ecosystems are often far from equilibrium, but our understanding of nonequilibrium dynamics has been hampered by a paucity of analytical tools. Here I describe a novel approach to modeling seasonally forced food webs, called "successional state dynamics" (SSD). It is applicable to communities where species dynamics are fast relative to the external forcing, such as plankton and ...
متن کاملPeriodically forced food-chain dynamics: model predictions and experimental validation.
Despite the recognition of the importance of seasonal forcing in nature, remarkably few studies have theoretically explored periodically forced community dynamics. Here we employ a novel approach called "successional state dynamics" (SSD) to model a seasonally forced predator-prey system. We first generated analytical predictions of the effects of altered seasonality on species persistence and ...
متن کاملDecoupled diversity dynamics in green and brown webs during primary succession in a saltmarsh.
Terrestrial ecosystems are characterized by a strong functional connection between the green (plant-herbivore-based) and brown (detritus-detritivore-based) parts of the food web, which both develop over successional time. However, the interlinked changes in green and brown food web diversity patterns in relation to key ecosystem processes are rarely studied. Here, we demonstrate changes in spec...
متن کاملEcosystem assembly rules: the interplay of green and brown webs during salt marsh succession.
Current theories about vegetation succession and food web assembly are poorly compatible, as food webs are generally viewed to be static, and succession is usually analyzed without the inclusion of higher trophic levels. In this study we present results from a detailed analysis of ecosystem assembly rules over a chronosequence of 100 years of salt marsh succession. First, using 13 yearlong obse...
متن کاملBenchmarking Successional Progress in a Quantitative Food Web
Central to ecology and ecosystem management, succession theory aims to mechanistically explain and predict the assembly and development of ecological communities. Yet processes at lower hierarchical levels, e.g. at the species and functional group level, are rarely mechanistically linked to the under-investigated system-level processes which drive changes in ecosystem properties and functioning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American naturalist
دوره 180 1 شماره
صفحات -
تاریخ انتشار 2012